A Fast Sparse Coding Method for Image Classification
نویسندگان
چکیده
منابع مشابه
Discriminative Tensor Sparse Coding for Image Classification
A novel approach to learn a discriminative dictionary over a tensor sparse model is presented. A structural incoherence constraint between dictionary atoms from different classes is introduced to promote discriminating information into the dictionary. The incoherence term encourages dictionary atoms to be as independent as possible. In addition, we incorporate classification error into the obje...
متن کاملA Novel Classification Method for Image Coding
In this paper, a novel classification method is proposed to speedup the fractal encoding speed. By using two DCT coefficients: lowest horizontal coefficient and lowest vertical coefficient, all of the image blocks including domain blocks and range blocks are classified into three classes: smooth type, horizontal/vertical edge type and diagonal/sub-diagonal edge type. For each range block to be ...
متن کاملRice Classification and Quality Detection Based on Sparse Coding Technique
Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...
متن کاملImage Classification Algorithm Based on Sparse Coding
In this paper, the sparse coding and local features of images are combined to propose a new image classification algorithm. Firstly, online dictionary learning algorithm is employed to train the visual vocabulary based on SIFT features. Secondly, SIFT features are extracted from images and these features are encoded into sparse vector through visual vocabulary. Thirdly, the images are evenly di...
متن کاملSupervised and Projected Sparse Coding for Image Classification
Classic sparse representation for classification (SRC) method fails to incorporate the label information of training images, and meanwhile has a poor scalability due to the expensive computation for `1 norm. In this paper, we propose a novel subspace sparse coding method with utilizing label information to effectively classify the images in the subspace. Our new approach unifies the tasks of di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Sciences
سال: 2019
ISSN: 2076-3417
DOI: 10.3390/app9030505